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If we attempted to approximate the rea! continuous functions by poly­
nomials with only real zero~, we would meet with dismal failure, A function,
like x 2 I, with a positive minimum, cannot be approximated well at alL
since (nonconstant) polynomials with real zeros have all their maxima
nonnegative: and all their minima nonpositive In fact the approximable
functions arc known to form a very small subclass of the continuous onc~.

(They arc analytically continuable to be oftlnite order with real zeros.)
This situation changes dramatically, however, if we look to rational

function, rather than polynomial, approximation. There have been many
situations uncovered recently where rational functions perform much better
than polynomials and this is one more ~,ueh instance. We will see, namely,
that rational functions with real zeros and poles approximate arbitrary rea!
continuous functions arbitrarily well! Indeed IllLlch more is true and one does
not need anywhere near this many zeros and poles.

Let S be any set of real numbers and denote by Rs the set of all rational
functions having all zeros and poles in S'. Also let C[a, b] denote the space of
real continuous functions under the usual sup-norm, We have then

THEORE\1. If'S is dense in [a, b] and, for some E > 0, S
is infinite, then Rs is dense in era, bJ.

Remarks. We notc that these conditions are almost best possible, it being
clearly necessary that S be dense in [a, b] and also that S-- [a, b] be infinite.
What is amusing is the counterexample which shows that something more is
required. Let [a, b] -~ [0, I} and choose S as [0, I] together with the sequence
2"/(2"--I);n c,_, 1,2,3 .... Since the linear function !(x) x-(2"/(2" I})
satisfies I(O)/!( 1)- 2", it follows that all the r(x) c= Rs , which do not vanish
on [0, I} must satisfy r(O)/r(l) 21

" k an integer, and therefore the only
nonvanishing functions which can be approximated must also satisfy this
condition!

* Supported by NSF (MS) 75-08002.

Copyright -."I') 1977 by Ac,ldernic Press. Inc.
All rights of reproduction in any form rcsl'rvcd.

176

[SS"; 0021-9045



REAL ZEROS AND POLES 177

Proof of the Theorem. We first reduce the problem to that of approxi­
mating positive functions in C[a, bJ. For let/ex) be any function of C[a, bJ
and pick a nearby polynomial. We may then slightly perturb those zeros of
this polynomial from [a, bJ to all lie in S. This new polynomial can be written
as p(x) q(x) where q(x) has all its zeros (OS (so that q(x) (0 Rs ) and where
p(x) .. 0 on [a, bJ. The promised reduction is thereby achieved since we need
now only approximate p(x).

Taking logarithms, then, allows us to restate our result as the fact that the
linear combinations C ,L 2:;,'.'1 VI, log i x .. .Y;. : • VI> integers. Creal,
x/ c S - [a. bJ. are dense in C[a. bj. We prove in fact that this is the case
with the added restriction 2..;'1 VI, O. So denote by Ls the collection of
these expressions under this additional restriction.

Now Jet ~ be a limit point ofS lying outside of [a, 0]. We wish to reduce to
the case of fXJ, so suppose ~ 'i CD and map the reals by .r' l/(x f).
This takes (a. bj onto either (I/(h - f). I/(a -- f)j or [1/([[ -. f), l/(b f)j.
I t also sends S onto a set T which does hare oX! as a limit point. Furthermore,

"
C - L VI, log X\k

I, _.1

1'/, log .r -- Yr, 1

so that Ls maps over to L T and the reduction is complete.
We assume then that ~ ,,7, C!J and proceed by induction on N to show, for

any real C, that Cxs E ls . The case of N '00 0 has been hypothesized and so
we proceed to general N and we can assume that every polynomial of degree
< N already lies in Ls . Choose Xl , X t large elements of S and note that
- -log J - (x/xl)i+- log i I _. (X/X2)[ E Ls . Hence letting x~ --+ oc gives
--log i I --- (X/Xl) 1 E ls and substracting off the partial sum, this tells us that
:L:J;;.-s (1 j)(x/xJ)j E Ls . Now choose an integer V within I of CN:r/i and with
r V! :( . CN.Y/'; i , and conclude that V· Lf).'V (l/j)((x/xJ)j E ls . To check
that this is close to CxN we have, writing A =c Max(! a ! , i b '),

1,1 V' )-~._N J~ ( XXI ,)i - Cx N I 'c~, I • -~ (j~)V 't- I ~X-i (~~.)j
> N I Xl I ' jN j ,I XJ I

c; (_A_,)N; I CIA-V I (A_r-N

Ix]; j>N 1'\'1,

(
A )N 1 C I AN+l

= fXJ + IXl 1- A

and this can be made arbitrarily small by taking Xl large enough. The
induction is complete.

Having shown, then, that [s contains all (real) polynomials we simply
invoke Weierstrass' theorem to complete our proof.


